【文献速递】动物活体成像系统在纳米医学领域中的应用

【文献速递】动物活体成像系统在纳米医学领域中的应用

2023-03-24 13:49:20

近日,同济大学化学系-上海市化学品分析、风险评估与控制重点实验室石硕教授团队在纳米医学领域取得新的研究成果,在国际知名期刊《Journal of Nanobiotechnology》(IF=10.435,JCR2区)上发表研究性论文。

图1|国际知名期刊《Journal of Nanobiotechnology》(IF=10.435,JCR2区)

化学动力学疗法(CDT)是一种利用Fenton或类Fenton催化剂将过氧化氢(H2O2)转化为有毒的羟自由基(·OH)来杀伤肿瘤细胞的方法,在肿瘤治疗中具有广阔的应用前景。

但是,由于肿瘤细胞内H2O2水平不足,其治疗效果受到明显限制。β-拉帕醌(Lapa)在烟酰胺腺嘌呤二核苷酸(磷酸)NAD(P)H:醌氧化还原酶-1(NQO1)的催化下能够发挥补充H2O2的功能,为解决这一问题提供了新的思路。


然而,高水平的活性氧会导致DNA的广泛损伤,引发聚腺苷二磷酸核糖聚合酶(PARP)的“过度激活”,导致H2O2供应中断,进而导致CDT的疗效降低。


为了解决这个问题,石硕教授团队开发了一种自扩增纳米催化体系(ZIF67/Ola/Lapa),可以共同提供PARP抑制剂奥拉帕利(Ola)和NQO1生物活性药物Lapa,用于可持续产生H2O2和增强CDT(“1+1+1 > 3”)。结果显示,Ola对PARP的有效抑制下,可以协同Lapa让NQO1介导的氧化还原循环促进H2O2的持续生成。反过来,高浓度的H2O2进一步与钴(Co2+)反应,通过类Fenton反应生成剧毒的·OH,极大地提高了CDT的疗效。体内外结果表明,ZIF67/Ola/Lapa在NQO1过表达的MDA-MB-231肿瘤细胞中具有良好的抗肿瘤活性。


最重要的是,由于NQO1在正常组织中低表达,该纳米复合材料对活体的毒性非常小。

图2| ZIF67/Ola/Lapa纳米颗粒形成和基于Lapa和Ola(PARPi)协同作用持续产生由NQO1介导的H2O2增强CDT疗效的机制示意图

文章中,验证ZIF67/Ola/Lapa纳米颗粒在MDA-MB-231荷瘤小鼠体内的分布和肿瘤靶向性活体实验成像,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。

尾静脉注射小鼠ICG标记的ZIF67/Ola和ZIF67/Ola/Lapa,并在注射后不同时间段使用AniView100获得小鼠体内、解剖器官和肿瘤的荧光图像。结果显示ZIF67/Ola组小鼠在注射24h后肿瘤部位的荧光信号基本消失,而ZIF67/Ola/Lapa组的荧光信号在注射1h后开始出现,6h后逐渐增强,并达到最大值,甚至在注射24h后仍在肿瘤组织中保持显著较高的荧光强度,表明ZIF67/Ola/Lapa在肿瘤组织中具有较长的滞留能力。进一步的体外荧光成像结果显示,ZIF67/Ola/Lapa主要由肝脏和肾脏代谢,在肿瘤的荧光强度是ZIF67/Ola的1.8倍,显示了良好的肿瘤聚集能力。这些结果表明,制备的ZIF67/Ola/Lapa能够优先有效地在肿瘤组织中蓄积,且血液循环时间延长。

图3| ZIF67/Ola/Lapa纳米颗粒的体内外分布情况

a、ICG-ZIF67/Ola和ICG-ZIF67/Ola/Lapa静脉给药后在小鼠体内的分布情况,红色圆圈代表肿瘤。

b、肿瘤组织在不同时间点的荧光强度。

c、解剖器官和肿瘤在12h的典型荧光图像。

d、半定量分析解剖的主要脏器和肿瘤组织在12h的荧光强度。

与光动力或声动力治疗相比,CDT可以在没有外部能量输入(光或超声)和氧气的情况下独立进行。这使得它能够克服组织穿透深度有限、肿瘤微环境缺氧和非特异性等缺点,在肿瘤治疗中具有更广阔的应用前景。针对目前主要通过提高瘤内H2O2浓度以增强CDT的疗效,可能会导致效果不佳和非特异性毒性,石硕教授团队通过在CDT试剂中原位生产补充H2O2的官能团,从而提高抗癌效果,为利用设计结合PARP抑制剂与NQO1生物活性药物的多功能CDT药物来治疗肿瘤提供了新的思路。

参考文献:https://doi.org/10.1186/s12951-021-00998-y